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Abstract

This paper presents a systematic study on gap-dependent sample complexity in
offline reinforcement learning. Prior work showed when the density ratio between
an optimal policy and the behavior policy is upper bounded (the optimal policy
coverage assumption), then the agent can achieve an O

�
1
✏2

�
rate, which is also

minimax optimal. We show under the optimal policy coverage assumption, the rate
can be improved to O

�
1
✏

�
when there is a positive sub-optimality gap in the optimal

Q-function. Furthermore, we show when the visitation probabilities of the behavior
policy are uniformly lower bounded for states where an optimal policy’s visitation
probabilities are positive (the uniform optimal policy coverage assumption), the
sample complexity of identifying an optimal policy is independent of 1

✏
. Lastly, we

present nearly-matching lower bounds to complement our gap-dependent upper
bounds.

1 Introduction

Reinforcement Learning (RL) aims to learn a policy that maximizes the long-term reward in unknown
environments [Sutton and Barto, 2018]. The success of reinforcement learning often relies on being
able to deploy the algorithms that directly interact with the environment. However, such direct inter-
actions with real environments can be expensive or even impossible in many real-world applications,
e.g., health and medicine [Murphy et al., 2001, Gottesman et al., 2019], education [Mandel et al.,
2014], conversational AI [Ghandeharioun et al., 2019] and recommendation systems [Chen et al.,
2019]. Instead, we have access to a dataset generated from some past suboptimal policies. Offline
reinforcement learning (offline RL) aims to find a near-optimal policy using the offline dataset, and
has achieved promising empirical successes [Lange et al., 2012, Levine et al., 2020].

Recently, a line of works showed that under the single policy coverage assumption (Assumption 3.2),
one can obtain a near-optimal policy with polynomial number of samples [Rashidinejad et al., 2021,
Xie et al., 2021b, Yin and Wang, 2021, Xie et al., 2021a, Li et al., 2022]. In particular, for the tabular
setting, recent works have obtained minimax optimal sample complexity bounds e⇥

⇣
H

3
SC

⇤

✏2

⌘
where

H is the planning horizon, S is the number of states, C⇤ is the constant for the single policy coverage
assumption, and ✏ is the target accuracy [Xie et al., 2021b, Li et al., 2022]. The O

�
1/✏2

�
is for the
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worst case and in many benign settings, one may use much fewer samples to learn a (near-)optimal
policy.

How the benign problem structures help reduce the sample complexity has been extensively studied in
the online bandits and reinforcement learning [Simchowitz and Jamieson, 2019, Jonsson et al., 2020,
Wagenmaker et al., 2021b, Xu et al., 2021]. In particular, when there is a suboptimality gap between
the optimal policy and the rest, then one can obtain log T -type regret in contrast to

p
T -type regret

bounds in the worst case where T is the number of interactions. However, to our knowledge, how
the gap structure helps reduce sample complexity in offline RL has not been thoroughly investigated.
This paper presents a systematic study on gap-dependent bounds for offline RL in the canonical
tabular setting, with nearly-matching upper and lower bounds in different regimes.

1.1 Main Contributions

We present novel analyses for the standard VI-LCB algorithm (Algorithm 2). Our main results are
summarized in Table 1.1.

1. We develop a novel technique, deficit thresholding, to obtain gap-dependent bounds in
offline RL. Different from the clip trick widely used in online RL [Simchowitz and Jamieson,
2019, Xu et al., 2021] to obtain gap-dependent bounds, our deficit thresholding technique
is adaptive to the problem-instance. As will be shown in Section 6.2, this technique helps
reduce the dependency on H by adapting to the variance of the estimate.

2. Using the deficit thresholding technique, we obtain the first gap-dependent bound under
the optimal policy coverage assumption. Specifically, we obtain an eO

⇣
H

4
SC

⇤

✏gapmin

⌘
bound

where gapmin is the minimum suboptimality gap between the optimal Q-value of the best
action and that of the second-to-the-best action.1 Notably, compared with the worst-case
gap-indepdent, the rate improves from 1/✏2 to 1/✏.

3. We also present the first gap-dependent lower bound for offline RL, ⌦
⇣

H
2
SC

⇤

✏gapmin

⌘
to show

the O (1/✏) is unimprovable even with the gap condition, and our upper bound is tight up to
an H2 factor. The main insight from our lower bound is that if there exists a state whose
visitation probability of the behavior policy and the optimal policy is O (✏), then we cannot
learn much of the state using the offline dataset and will inevitably incur an O (✏) error.

4. We further study what condition permits even faster rate than O (1/✏). Leveraging our lower
bound mentioned above, we propose a new condition, uniform optimal policy coverage,
which posits that the visitation probabilities of the behavior policy are uniformly lower
bounded by P for states where an optimal policy’s visitation probabilities are positive.
Under this assumption, we obtain an eO

⇣
H

3

Pgap2
min

⌘
bound. Importantly, this bound is

independent of 1/✏ (not even log(1/✏)), a.k.a., one can identify an exact optimal policy. We
also complement this upper bound with an ⌦

⇣
H

Pgap2
min

⌘
lower bound to show our upper

bound is tight up to an H2 factor.

Lastly, we note that all of our bounds are obtained with the same algorithm, i.e., the algorithm
automatically exploits the benign problem structure without any prior knowledge.

2 Related Work

We focus on existing theoretical results on gap-dependent bounds and offline RL in the tabular setting.

Theoretical Results on Offline Tabular RL. Theoretical analysis of offline RL can be traced back
to Szepesvári and Munos [2005], under the uniform coverage assumption where every state-action

1The gap-dependent bounds in the online setting also depend on the suboptimality gaps of the actions other
than the second-to-the-best action. This dependency is not needed for offline RL because even if the dataset
does not have any information about the sub-optimal actions, the agent can still learn a near-optimal policy (as
long as the dataset covers an optimal action). On the other hand, this dependency is needed in the online setting
because the agent needs to explore the all actions.
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Condition Upper bound Lower bound

C⇤ eO
⇣

H
3
SC

⇤log 1
�

✏2

⌘
⌦
⇣

H
3
SC

⇤

✏2

⌘

C⇤, gapmin
eO
⇣

H
4
SC

⇤log 1
�

✏gapmin

⌘
⌦
⇣

H
2
SC

⇤

✏gapmin

⌘

P , gapmin
eO
⇣

H
3log 1

�

Pgap2
min

⌘
⌦
⇣

H

Pgap2
min

⌘

Table 1: Sample Complexity Bounds for different conditions about the sub-optimality and coverage.
Cells in gray are the contributions of this work. The results in the first line without suboptimality
gap assumptions were obtained in Xie et al. [2021b], Li et al. [2022]. C⇤ stands for the relative
optimal policy coverage coefficient, i.e., max

h,s

d
⇤
h(s)

d
µ
h(s)

where d⇤
h
(s) is the visitation probability of

the optimal policy for state s at level h and dµ
h
(s) is the visitation probability of the behavior

policy µ for state s at level h. P stands for the uniform optimal policy coverage coefficient, i.e.,
min

h,s|d⇤
h(s)>0

dµ
h
(s). gapmin is the minimum non-zero suboptimality gap among all time-state-action

tuples, i.e., min
h,s,a|a is not optimal

V⇤
h
(s)�Q⇤

h
(s, a).

pairs are visted by the behavior policy with a positive probability. Sharp sample complexity bounds
have been obtained under this assumption [Xie and Jiang, 2021, Xie et al., 2019, Yin et al., 2020,
2021b, Ren et al., 2021]. Recently, a line of works showed that under a much weaker assumption,
single policy coverage, one can design sample efficient algorithms with both model-based and model-
free methods based on the pessimism principle, [Rashidinejad et al., 2021, Yin and Wang, 2021, Xie
and Jiang, 2021, Jin et al., 2021, Uehara and Sun, 2021, Uehara et al., 2021, Zanette et al., 2021].
Recently, Yin and Wang [2021] obtained a problem-dependent sample complexity in terms of the
variance.

Instance-dependent Sample Complexity in Online Learning and Generative Models. In online
RL, a line of work studied the upper and lower bounds of gap-dependent sample complexity in both the
regret and PAC settings [Simchowitz and Jamieson, 2019, Xu et al., 2021, Dann et al., 2021, Jonsson
et al., 2020, Wagenmaker et al., 2021b,a, Tirinzoni et al., 2021]. Besides gap-dependent bounds, there
are other problem-dependent bounds such as first-order and variance-dependent bounds Zanette and
Brunskill [2019]. For generative models, Zanette et al. [2019] derived an upper bound depending on
both variance and gap information.

Gap-dependent bounds in Offline Learning. The most related work is by Hu et al. [2021]
who studied the convergence rate of Q-learning in the discounted MDPs under the uni-
form coverage assumption. They proved that one can obtain an ✏-optimal policy with
O
�
S3A3 log(1/✏)/(1� �)4P 2gap2min

�
samples for tabular MDP and eO(1/✏) (ignoring other param-

eters) for linear MDP. In comparison, we show that under the weaker uniform optimal policy coverage
assumption, we can identify an exact optimal policy with O

�
H3/Pgap2min

�
sample complexity,

which has no dependency on 1/✏.

3 Preliminaries

Notations. We let [n] = {1, 2 · · ·n}. For two vectors a, b of the same length k, we use a�b to denote
the Hadamard product (a1b1, a2b2 · · · akbk). We use the standard definitions of O(·),⇥(·),⌦(·) to
hide absolute constants, and tilded notations eO(·), e⇥(·), e⌦(·) to hide absolute constants as well as
poly-logarithmic factors except for log 1

�
. Varp(V ) = p>V � V � (p>V )2 refers to the variance of

V with respect to the weight p. a . b means a  Cb for some positive absolute constant C, and
similarly a & b means a � Cb. I{⇠} is the indicator function of the event ⇠, which equals 1 when ⇠
is true and 0 otherwise. �(X ) is the probability simplex over X .
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3.1 Markov Decision Processes

We consider tabular finite-horizon time-inhomogeneous MDPs described by the tuple M =
(S,A, H,P, p0, r). Here S is the state space with cardinality S, A is the action space with car-
dinality A, P = {ph,s,a}(h,s,a)2[H]⇥S⇥A with ph,s,a 2 �(S) is the transition kernel at timestep h,
state s and action a, p0 2 �(S) is the initial state distribution of s1, and r = {r1, r2, . . . , rH} with
rh : S ⇥A! [0, 1] is the reward function.2 For each episode, the player will generate a trajectory
{(sh, ah, rh)}Hh=1 where s1 ⇠ p0, sh+1 ⇠ ph,sh,ah , and rh = rh(sh, ah), by controlling the actions
{ah}Hh=1. The target of the player is to maximize the total reward

P
H

h=1 rh.

Policies. A policy ⇡ = {⇡h(·|s)}(h,s)2[H]⇥S refers to a set of distributions over A. With a slight
abuse of the notations, when a policy ⇡ is deterministic, we use ⇡h(s) to denote the action taken
at timestep h and state s. We define E⇡,M[·] , E�⇠(⇡,M)[·], where � = {(sh, ah, rh)}h2[H] is a
trajectory sampled using policy ⇡ in the MDP M and the expectation is over the randomness of both
the policy and the transitions. M will be omitted when there is no confusion.

Value Functions, Q-Functions and Policy Distributions. For a given policy ⇡ and an MDP M,
we define the state value function and the state-action value function to be

V⇡

h
(s) , E⇡

"
HX

h0=h

rh0(sh0 , ah0) | sh = s

#
,Q⇡

h
(s, a) , E⇡

"
HX

h0=h

rh0(sh0 , ah0) | sh = s, ah = a

#
.

We define the optimal Q-function as Q⇤
h
(s, a) , sup

⇡
Q⇡

h
(s, a), and similarly V⇤

h
(s) , sup

⇡
V⇡

h
(s)

for all (h, s, a) 2 [H]⇥ S ⇥A. It is well known that there exists a deterministic optimal policy ⇡⇤

that can achieve the above maximum for all s 2 S , a 2 A and h 2 [H] simultaneously.

We denote the value of a policy by V⇡

0 = E⇡

hP
H

h=1 rh(sh, ah)
i
, and the value of the optimal policy

by V⇤
0 = V⇡

⇤

0 . A policy ⇡ is ✏-optimal if

Suboptimal(⇡) , V⇤
0 �V⇡

0  ✏.

We use d⇡
h
(·) to denote the probability of reaching a state s under policy ⇡:

d⇡
h
(s) , E⇡[I{sh = s}], d⇡

h
(s, a) , E⇡[I{(sh, ah) = (s, a)}] = d⇡

h
(s)⇡h(a | s).

Sub-optimality Gap. For a MDP instance M, we define the gap at (h, s, a) 2 [H] ⇥ S ⇥ A to
be gap

h
(s, a) = V⇤

h
(s)�Q⇤

h
(s, a), which is always non-negative because of the definition of ⇡⇤.

Our results will depend on the smallest positive gap: gapmin , min
(h,s,a)|gaph(s,a)>0

gap
h
(s, a), which

quantifies the difficulty of learning the optimal policy in the MDP instance.3

3.2 Offline Reinforcement Learning

Offline Learning. For offline reinforcement learning, we want to solve an MDP M =
(S,A, H,P, r) with unknown transitions by utilizing a given dataset collected by some unknown
behavior policy µ. Note that the algorithm is not allowed to perform any kind of additional sampling.
The dataset is D = {{(sh,i, ah,i, rh,i)}h2[H]}i2[N ], which contains N trajectories collected by the
behavior policy µ independently. A (✏, �)-PAC offline reinforcement learning algorithm is defined to
output an ✏-optimal policy ⇡ with probability at least 1� �.

Assumptions. We introduce two dataset assumptions that will be used in this paper.
Assumption 3.1 (Uniform optimal policy coverage). We define the uniform optimal policy coverage

coefficient to be

P , min
⇡⇤

min
h,s:d⇡⇤

h (s,a)>0
dµ
h
(s, a),

where ⇡⇤
is an optimal policy. We assume that P > 0.

2We assume a known deterministic reward function as the main difficulty lies in learning the transition
probability. All the conclusions in this paper can be proved for MDPs with unknown 1-subGuassian reward.

3We assume that at least one gap is positive. Otherwise all the actions are optimal and no learning is needed.
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Algorithm 1: VI-LCB
input :Dataset D0, reward function r

1 Set Q
H+1

(s, a) = 0

2 Set V
H+1(s, a) = 0

3 for h H to 1 do

4 Compute the empirical transition kernel P̂h

5 P̂h,s,a(s0) =
Nh(s,a,s

0)
Nh(s,a)

with 0/0 = 0

6 for s 2 S, a 2 A do

7 bh(s, a) Cb

r
VarP̂h,s,a

(Vh+1)◆

N
0
h(s,a)

+ Cb
H◆

N
0
h(s,a)

, where N 0
h
(s, a) = Nh(s, a) _ ◆

8 Q
h
(s, a) max{0, rh(s, a) + P̂>

h,s,a
V

h+1 � bh(s, a)}
9 for s 2 S do

10 V
h
(s) max

a2A
Q

h
(s, a)

11 ⇡
h
(s) argmax

a2A
Q

h
(s, a)

output :policy ⇡

Algorithm 2: Subsampled VI-LCB
input :Dataset D, reward function r

1 Split D into 2 halves containing same number of sample trajectories, Dmain and Daux

2 D0 = {}
3 for (h, s) 2 [H]⇥ S do

4 N trim
h

(s) max{0, Naux
h

(s)� 10
q

Naux
h

(s) log HS

�
}

5 Randomly subsample min{N trim
h

(s), Nmain
h

(s)} samples of transition from (h, s) from
Dmain to add to D0

6 ⇡  VI-LCB(D0, r)
output :policy ⇡

Assumption 3.1 states that the behavior policy µ covers all the state-action pairs that some ⇡⇤ will
choose with positive probability. This is a natural assumption if we want to recover the optimal
policy.

A closely related assumption is the uniform coverage assumption, i.e., all (h, s, a) tuples are covered
by the dataset [Yin and Wang, 2020, Ren et al., 2021, Yin et al., 2021a, Hu et al., 2021]. Our
assumption is significantly weaker as it only assumes covering the optimal policy. We will prove that
under this assumption, we can identify the optimal policy with finite samples.

Assumption 3.2 (Optimal policy coverage). We define the relative optimal policy coverage coefficient

to be

C⇤ , max
⇡⇤

max
(h,s,a)2[H]⇥S⇥A

d⇡
⇤

h
(s, a)

dµ
h
(s, a)

with convention that 0/0 = 0, where ⇡⇤
is an optimal policy. We assume that C⇤ <1.

Similar coverage assumption has been widely adopted in Li et al. [2022], Shi et al. [2022], Yan et al.
[2022], Jin et al. [2021], Rashidinejad et al. [2021]. Researchers have designed algorithms based on
the pessimism principle to efficiently solve offline RL problems under this assumption. Assumption
3.2 is usually weaker than Assumption 3.1. For example, if there exists one unique optimal policy
⇡⇤ and µ = ⇡⇤, we have C⇤ = 1 while P can still be arbitrarily small. In addition, we always have
C⇤  1

P
.
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3.3 Subsampled VI-LCB

We briefly introduce the algorithm (Algorithm 2) that will be used in the analysis. Value Iteration with
Lower Confidence Bound (VI-LCB) was first introduced by Rashidinejad et al. [2021] and improved
by Li et al. [2022]. The main idea is to maintain a pessimistic estimate on the value functions so
that the suboptimality of the output policy only depends on the uncertainty of the optimal policy. By
utilizing the subsampling technique and Bernstein-style bonus, subsampled VI-LCB achieves the
minimax sample complexity eO(H

3
SC

⇤

✏2
).

In the algorithm, Nh(s, a) refers to the number of sample transitions starting from state s, taking
action a at time step h of some given dataset, and Nh(s) =

P
a2A Nh(s, a). Superscripts stand for

the dataset. See Li et al. [2022] for a more detailed description of the algorithm.

4 Finding an Exact Optimal Policy with Assumption 3.1

In this section, we show that we can identify the exact best policy with finite samples by utilizing
the gap structure under Assumption 3.1. On the other hand, for the minimax sample complexity
eO(H3SC⇤✏�2), it will become infinite when ✏ approaches 0. Note that directly setting ✏ < gapmin
does not imply that the output policy ⇡ is optimal. Instead, we only have

V⇡

0 � V⇤
0 � ✏,

while ⇡ can still be suboptimal at states visited with low probability.
Theorem 4.1. For an MDP M and a behavior policy µ with uniform optimal coverage coefficient P ,

if the number of sample trajectories satisfies

N � eO
✓
H3 log 1

�

Pgap2min

◆
,

then with probability at least 1� �, Algorithm 2 returns an optimal policy.

Sketch of Proof. First, if for all (h, s, a) 2 [H]⇥ S ⇥A satisfying d⇤
h
(s, a) > 0, we have

Q
h
(s, a) > Q⇤

h
(s, a)� gapmin, (1)

then we have ⇡ is an optimal policy. This is because as Q is a pessimistic estimate of Q⇤, we have

Q
h
(s, a) > Q⇤

h
(s, a)� gapmin � Q⇤

h
(s, a0) � Q

h
(s, a0),

for any action a0 that is sub-optimal. As a result, ⇡ chooses the optimal action for all (h, s, a) 2
[H]⇥ S ⇥A covered by the optimal policy, which implies ⇡ is an optimal policy.

Second, we show that (1) is satisfied with N � eO
⇣

H
4

Pgap2
min

⌘
. This is because if the number of

samples at (h, s, a) exceeds eO(H4/gap2min), we can guarantee that the estimation error at that step
is smaller than gapmin/H by Hoeffding’s inequality. Then the accumulated estimation error at
Q

h
(s, a) can be bounded by (H � h)gapmin/H < gapmin, which implies (1). To further improve

the dependence on H , we will use Bernstein’s inequality and the proof is deferred to Appendix
B.4.

5 Gap-dependent Upper Bounds with Assumption 3.2

In the previous section, we show that the optimal policy can be identified if Assumption 3.1 is
satisfied. However, the uniform optimal coverage coefficient P can be very small, which makes the
bound N � eO

⇣
H

3

Pgap2
min

⌘
useless. In this section, we present two results on learning an ✏-optimal

policy with assumption (Assumption 3.2) and we provide the proof sketch in the next section. The
full proof can be found in Appendix B.
Theorem 5.1. For an MDP M and behavior policy µ with relative optimal policy coverage coefficient

C⇤
, if the number of sample trajectories satisfies

N � eO
✓
H4SC⇤ log 1

�

✏gapmin

◆
,

Algorithm 2 returns an ✏-suboptimal policy with probability at least 1� �.
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Theorem 5.1 shows that to learn an ✏-optimal policy, we only need eO(1/✏gapmin) samples, which
significantly improves the minimax sample complexity eO(1/✏2) when ✏⌧ gapmin.

Now we show that we can further improve the bound if both Assumption 3.1 and Assumption 3.2 are
satisfied.
Theorem 5.2. For an MDP M and behavior policy µ with uniform optimal policy coverage coefficient

P and relative optimal policy coverage coefficient C⇤
, if the number of sample trajectories satisfies

N � eO
✓
H3SC⇤ log 1

�

✏gapmin

+
H log 1

�

P

◆
,

Algorithm 2 returns an ✏-suboptimal policy with probability at least 1� �.

Theorem 5.2 improves an H factor compared with Theorem 5.1, with the cost of an extra H/P
term. As the additional term is a constant with respect to ✏ and gapmin, the bound is improved when
✏gapmin is small. We believe this H/P can be removed and we leave it to future works.

6 Main Proof Techniques

In this section, we will provide a proof sketch for Theorem 5.1 and Theorem 5.2.

6.1 Pessimistic Algorithms

First, we define pessimistic algorithms and imaginary MDPs M = (S,A, H,P, r) determined by
the pessimistic algorithms. Our analysis will generally hold for all pessimistic algorithms defined
by Definition A.2 and we will show that VI-LCB (Algorithm 2) is a pessimistic algorithm. We use
VI-LCB only to derive the final sample complexity guarantees.
Definition 6.1 (Pessimistic algorithms). An offline learning algorithm with output policy ⇡ is

pessimistic if with probability at least 1� �, the following arguments hold,

1. It maintains a pessimistic estimate Q of the true Q⇤
.

2. Q is the optimal Q function of an imaginary MDP M = (S,A, H,P, p0, r), where

r
h
(s, a)  rh(s, a) for all (h, s, a) 2 [H]⇥ S ⇥A.

4

3. ⇡ is the greedy policy with respect to Q.

Most of the existing offline RL algorithms are pessimistic algorithms and we will also prove it for
VI-LCB [Li et al., 2022] in Appendix B.
Definition 6.2 (Deficit). For any pessimistic algorithm and the corresponding imaginary MDP

M = (S,A, H,P, p0, r), we define the deficit to be

Eh(s, a) = rh(s, a)� r
h
(s, a), 8(h, s, a) 2 [H]⇥ S ⇥A.

From the definition of pessimistic algorithms, we have Eh(s, a) � 0 immediately. Intuitively, deficit
stands for how pessimistic the estimates are. Note that the deficit is related to the algorithm itself and
usually we can bound it by utilizing concentration inequalities.

6.2 Deficit Thresholding for Analysising LCB-style Algorithms

By defining V⇡ to be the value function of policy ⇡ in M and recalling that ⇡ is the optimal policy
in M, we have V⇤

0  V⇡

0  V⇡

0  V⇤
0 and thus

V⇤
0 �V⇤

0 =
HX

h=1

E⇡⇤ [rh(sh, ah)� r
h
(sh, ah)] =

HX

h=1

E⇡⇤ [Eh(sh, ah)]

4Here we loosen the definition of MDP by allowing the reward function to have negative value. r maybe
negative, but as will be shown in appendix, V⇡ and Q⇡ are still non-negative, thus does not affect our analysis.
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can upper bound the suboptimality of ⇡. Surprisingly, we will show that even if we threshold the
deficit, a similar upper bound still holds. Define the thresholded deficits and the corresponding reward
functions as
Ëh(s, a) , max{0,Eh(s, a)�✏h(s, a)}, r̈h(s, a) , rh(s, a)�Ëh(s, a), 8(h, s, a) 2 [H]⇥S⇥A,

for any non-negative threshold function ✏h(s, a). Then we can define a thresholded MDP M̈ =
(S,A, H,P, r̈) and we use V̈ to denote the value function in M̈. Now we present the key lemma
showing that if the thresholding function satisfies certain conditions related to gapmin, then the
suboptimality of ⇡ can still be bounded by the thresholded deficit.
Lemma 6.1. Suppose for a thresholding function ✏h(s, a), for all (h, s) 2 [H]⇥ S , we have

V⇤
h
(s) +

gapmin

2
� V̈⇤

h
(s). (2)

Then we can bound the suboptimality of ⇡ by the thresholded deficit:

suboptimal(⇡) = V⇤
0 �V⇡

0  V⇤
0 �V⇤

0  2(V⇤
0 � V̈⇤

0) = 2
HX

h=1

E⇡⇤ [Ëh(sh, ah)].

See Appendix A.2 for the rigorous proof, where this lemma is decomposed and restated as Theorem
A.1 and Definition A.5. One way to satisfy (2) is to set ✏h(s, a) = gapmin

2H for all (h, s, a) 2
[H] ⇥ S ⇥ A. As a result, the reward at each timestep h is increased by at most gapmin

2H after
thresholding, so the overall increase of the value function is bounded by gapmin/2. This kind of
✏h(s, a) leads to the following corollary.
Corollary 6.1. For any pessimistic algorithm, we have

V⇤
0 �V⇡

0  2
HX

h=1

E⇡⇤

h
max{0,Eh(sh, ah)�

gapmin

2H
}
i
.

In addition, note that Eh(sh, ah) depends on variance of the transition ph,sh,ah as if the transition
variance is small, the estimate will be accurate and the deficit will be small. This inspires us to
threshold adaptively based on the variance. We design the following adaptive threshold function:

✏h(s, a) /
Var

P̂h,s,a
(V

h+1)

H2
gapmin.

It turns out that e⌦(H
P
) sample complexity is enough to guarantee this kind of threshold function

satisfies (2). (See Lemma B.8 in Appendix B.5.1)
Corollary 6.2. For any pessimistic algorithm and number of samples N � eO(H

P
), we have

V⇤
0 �V⇡

0  2
HX

h=1

E⇡⇤

"
max{0,Eh(sh, ah)�

Var
P̂h,s,a

(V⇡

h+1)

H2
gapmin �

gapmin

4H
}
#
.

To proceed from Lemma 6.1, we will utilize the following inequality

Ëh(s, a) = max{0,Eh(s, a)� ✏h(s, a)} 
E2

h
(s, a)

✏h(s, a)
.

Then with different choices of ✏h(s, a) used in Corollary 6.1 and Corollary 6.2 and the bonus function
used in the VI-LCB algorithm, we can derive Theorem 5.1 and Theorem 5.2. Here we briefly explain
the eO(1/✏) dependence. We have Eh(s, a)  O(bh(s, a)), where bh(s, a) is the pessimistic bonus
scaling as O(1/

p
n) (ignoring other dependences). Then by Lemma 6.1 and the above inequality, we

can achieve an eO(1/✏) bound immediately. A more detailed proof is provided in Appendix B.

Our technique is similar to the clip techique [Simchowitz and Jamieson, 2019] in online MDP as both
of them threshold the estimates (deficit here and surplus in their work) by some ⇥(gapmin) terms.
Simchowitz and Jamieson [2019] further clip another gaph(s,ā)

H
term, and we can actually achieve

that as well, but it does not improve the sample complexity in the offline setting as we do not need to
explore all the actions. In addition, we develop a new thresholding function based on the empirical
variance, which can improve the H factor by utilizing the Bernstein’s inequality and the total variance
technique. We believe this new technique can also be applied to the online setting and improve the
sample complexity there.
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7 Gap-dependent Lower Bounds

In this section, we provide two lower bounds for uniform optimal coverage assumption (Assumption
3.1) and optimal policy coverage assumption (Assumption 3.2) respectively. Our lower bounds show
that Theorem 4.1 and Theorem 5.1 are optimal up to H factors and logarithm terms. We begin with
a general lower bound. Here the offline learning algorithm, ALG, is defined as the algorithm that
takes a dataset D as input and output a policy ⇡̂. Note that ALG can be stochastic.
Theorem 7.1. There exists some absolute constant C, such that for any A � 3, S � 2, H � 2, ⌧ <
1
2 ,� 

1
3 ,�1 � 2 and offline RL algorithm ALG, if the number of sample trajectories satisfies

N  C · HS�1

�⌧2
,

there exists a MDP instance M and a behavior policy µ with gapmin = ⌧ , P � �

eS�1
, C⇤  �1 such

that the output policy ⇡̂ of ALG has expected suboptimality

EM,µ,ALG[V⇤
0 �V⇡̂

0 ] �
�H⌧

12
.

By choosing � = 1/3, �1 = 1
3ePS

and ⌧ = gapmin, Theorem 7.1 indicates the following corollary.

Corollary 7.1. For any given instance coefficients (H, gapmin, P  1
6eS ), target suboptimality

✏ . Hgapmin and any offline reinforcement learning algorithm ALG, there exists an instance

(M, µ) such that if the number of trajectory samples satisfies

N  C · H

Pgap2min

,

the output policy ⇡̂ would have expected suboptimality more than ✏, i.e.,

EM,µ,ALG[V⇤
0 �V⇡

⇤

0 ] � 1

36
Hgapmin � ✏

By choosing � = 12✏
Hgapmin

, �1 =C⇤, ⌧ = gapmin, Theorem 7.1 indicates the following corollary.

Corollary 7.2. For any given instance coefficients (H,S, gapmin, C
⇤� 2), target suboptimality

✏ . Hgapmin and any offline learning algorithm ALG, there exists an instance (M, µ) such that if

the number of trajectory samples satisfies

N  C · H
2SC⇤

✏gapmin

,

the output policy ⇡̂ would have expected suboptimality more than ✏, i.e.,

EM,µ,ALG[V⇤
0 �V⇡

⇤

0 ] � ✏.

The proof of the corollaries can be found in Appendix C.1. We construct a family of MDPs that
involve solving HS independent bandit problems, where each bandit requires e⌦(HA

⌧2 ) visits so that
the estimation error can be bounded by ⌧ . Similar constructions have been made in Yin et al. [2021a],
Dann et al. [2017], Xie et al. [2021b] . Our key observation is that the initial state distribution can
linearly determine the uniform optimal policy coverage coefficient P and the final suboptimality.
Also, our proof can lead to another version of lower bound, where a ⌦(✏) suboptimality occurs with a
constant probability. See Appendix C.2.3 for details.

8 Necessity of All-Optimal-Policy Coverage

As one may notice that Assumption 3.1 and Assumption 3.2 are not exactly the most widely adopted
versions [Li et al., 2022, Xie et al., 2021b, Rashidinejad et al., 2021]. Here the assumptions require a
coverage of all the optimal policies instead of only one optimal policy. This assumption can not be
weaken as long as we are using naive LCB-style algorithm, and a counterexample can be found in
Appendix D.
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Intuitively, the problem lies in that we can not distinguish between different optimal policies. Gap
information helps us distinguish optimal actions from sub-optimal ones when the estimation error is
relatively small, but a naive LCB algorithm still has the probability of choosing an optimal action
((s, a2) in the counterexample) without fully exploring the subsequent state-action pairs. In online
gap-dependent analysis, this problem can be addressed by some sophisticated exploration techniques
[Xu et al., 2021]. It is unclear if we can weaken the assumption to single policy coverage and we
leave this to future work.

9 Conclusion

We presented a systematic study on gap-dependent upper and lower bounds for offline reinforcement
learning. Depending on different assumptions, the rates can be improved from eO(1/✏2) in the worst
to eO (1/✏) or even independent of 1/✏. Also, we presented a counterexample to show that overall
optimal policy coverage is necessary in gap-dependent analysis.

One open question is that there still exists a gap between the upper and lower bounds in terms of H .
We note that this gap also exists in the online setting [Simchowitz and Jamieson, 2019, Xu et al.,
2021]. Another direction is to generalize our results to the function approximation setting [He et al.,
2021].
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